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The combinatorial hierarchy model for basic particle processes is based on 
elementary entities; any representation they may have is discrete and  two-val- 
ued. We call them Schnurs to suggest their most  fundamental  aspect as 
concatenating strings. Consider a definite small number  of them. Consider an  
elementary creation act as a result of which two different Schnurs generate a 
new Sclmur which is again different. We speak of this process as a "discrimina- 
tion." By this process and  by this process alone can the complexity of the 
universe be explored. By concatenations of this process we create more  complex 
entities which are themselves Schnurs at a new level of complexity. Everything 
plays a dual role in which something comes in from the outside to interact, and  
also serves as a synopsis or concatenat ion of such a process. We thus incorpo- 
rate the observation metaphysic at the start, rejecting Bohr's reduction to the 
haptic language of common  sense and  classical physics. Since discriminations 
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occur sequentially, our model is consistent with a "fixed past-uncertain future" 
philosophy of physics. We demonstrate that this model generates four hierarchi- 
cal levels of rapidly increasing complexity. Concrete interpretation of the four 
levels of the hierarchy (with cardinals 3,7,127,2127-1~103s) associates the 
three levels which map up and down with the three absolute conservation laws 
(charge, baryon number, lepton number) and the spin dichotomy. The first level 
represents +, - ,  and _ unit charge. The second has the quantum numbers of 
a baryon-antibaryon pair and associated charged meson (e.g., 
n~,p~,pff, nil, rr +, ~o, ~ -). The third level associates this pair, now including four 
spin states as well as four charge states, with a neutral lepton-antilepton pair 
(e~ or v~), each pair in four spin states (total, 64 states)--three charged spinless, 
three charged spin-l, and a neutral spin-1 mesons (15 states), and a neutral 
vector boson associated with the leptons; this gives 3 + 15 + 3 x 15 = 63 possible 
boson states, so a total correct count of 63+64= 127 states. Something like 
SU2X SU 3 and other indications of quark quantum numbers can occur as 
substructures at the fourth (unstable) level. Breaking into the (Bose) hierarchy 
by structures with the quantum numbers of a fermion, if this is an electron, 
allows us to understand Parker-Rhodes' calculation of me~me= 1836.1515 in 
terms of our interpretation of the hierarchy. A slight extension gives us the 
usual static approximation to the binding energy of the hydrogen atom, a2me c2. 
We also show that the cosmological implications of the theory are in accord 
with current experience. We conclude that we have made a promising beginning 
in the physical interpretation of a theory which could eventually encompass all 
branches of i~hysics. 

1. I N T R O D U C T I O N :  G E N E R A L  P R I N C I P L E S  O F  T H E  
C O M B I N A T O R I A L  H I E R A R C H Y  

In  this section we are concerned  with the basic principles of our  
combinator ia l  model  of basic physical  interactions.  This theory was pre- 
sented at two successive conferences on  " Q u a n t u m  Theory and  the Struc- 
tures of T ime and  Space"  at Tutz ing  (Bastin, 1976b). We shall compare  and  
contras t  our  own principles with the central  posi t ion in those conferences as 
a convenien t  and  brief  way to present  the relat ion of our  theory to the basic 

principles of the q u a n t u m  theory,  since we may regard the central  posi t ion 
established at Tutz ing  as the most  coherent  existing a t tempt  to establish 
founda t iona l  principles for current  q u a n t u m  theory.  

The combinator ia l  hierarchy model  was originally developed (Bastin, 
1966) as an  at tempt  to base physics on a single b inary  process called 
"discr iminat ion."  Sets of "co lumns"  conta in ing  only the existence symbols 
0, 1 closed under  this opera t ion are then viewed as new entities, a nd  the 
process is repeated. In  this way we generate a hierarchy of four levels of 
rapidly increasing complexity.  Al though the explicit representat ion of this 
hierarchy is not  unique,  the scheme itself is, as we demonst ra te  in this 
paper. Tentat ive  contact  with exper iment  can be made  by specific interpre-  
ta t ion of the representations,  and  structural  features familiar  in the s tudy 
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of elementary particle physics emerge, including some well-known numeri- 
cal results. This theory is essentially intended as a conceptual underpinning 
of the existing formalism of the quantum theory. 

The central idea at the Tutzing conferences was a theory of 
Ur's--basic, discrete, two-valued entities. The claim made by the Ur theo- 
rists (see particularly von Weizs/icker's 1978 paper) has been that if 
finitism is firmly and clearly enough embraced, then something Very like 
the usual quantum theoretical formalism can be sustained as a consistent 
theory and the paradoxes and other perplexities avoided. 

A different position has been maintained by Finkelstein (1969, 1977, 
1979), who accepts the finitist, part of the Ur program but considers that 
further innovation in basic principles is necessary. He adopts a process 
philosophy, thinking that the elementary discrete constituents of nature 
must have a principle of concatenation, and that this principle, whatever it 
may be, must tell us a good deal about the interrelations of the classical 
and the quantum worlds. 

Our theory accords with Finkelstein's demand for innovation beyond 
the finitist assumption; we adopt the general direction of his "process," or 
sequential concatenating conjecture. We present a definite model within 
the class specified by his conjecture, and can claim experimental backing 
for Our model. Our model is distinct from quantum mechanics; it might 
become equivalent to the latter under special conditions. Some results that 
would normally be thought to be dependent upon quantum mechanics as a 
complete theory appear in our model at a more general stage than that at 
which we make contact with the special case of quantum mechanics. We 
discuss below how some recent work of Finkelstein's (1969, 1977, 1979) 
might allow such contact to be made. 

The historical origins of the quantum theory concerned the experi- 
mental discovery of discreteness and an attempt to explain it using a 
continuum conceptual framework (we may consider that the Planck radia- 
tion formula was a striking experimental ratification of a theoretically 
arbitrary mathematical imposition of discreteness). Early quantum theory 
hardly claimed to be explanatory; the modern form of the theory has 
usually been seen as a successful reconciliation of the continuous and the 
discrete, and therefore as a satisfactory explanation of the latter. However, 
in view of the continuing unease with the conceptual foundations of the 
theory, it seems as appropriate today as it ever was to enquire (a) wherein 
the explanation lay, and (b) how successful it was. It is sensible to carry on 
our enquiry in the context of any of the traditional Gedankenexperimente 
(two-slit experiments, photon-splitting experiments, photon correlation ex- 
periments such as have been imagined by a sequence of theorists going 
back to Einstein, Podolsky, and Rosen). 
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As everybody knows, quantum theory has maintained that there is a 
distinct class of things in the universe called measurements or observations 
and that different rules apply to these from those that apply to interactions 
in which the acquisition of knowledge is not involved. In one way or 
another use is made of this principle to justify the importation into the 
formalism of a discrete principle. As everybody also knows, this principle 
has never produced peace of mind, even though the great thinkers of the 
quantum theory have concentrated their attention upon it. Consider, for 
example, the recent essay by Wheeler and Patton (1977). We shall refer to 
these arguments as the "observation metaphysic." 

In Bohr's attempt to achieve an understanding of the observation 
metaphysic, an absolutely central part was played by his (Bohr's) insistence 
that all theoretical formulations had to be interpreted through the mas- 
sively consistent and pervasive language which was at once classical 
physics and the common sense world. Bohr though it inconceivable that 
any underpinning or revision of this language using conceptual entities less 
evident to the senses was conceivable, practicable, or desirable. Indeed, his 
philosophy made a virtue of the necessity of this position. 

In the Ur theory this position of Bohr's has been abandoned, though it 
would not be true to say that the "observer metaphysic" has gone with it. 
What has happened is that as a result of their finitist presupposition the Ur 
theorists have been able to present the conventional quantum theoretical 
view of measurement as a merely technical development free from its 
paradoxical characteristics, at the expense of a profound innovation in the 
application of probability to the quantum picture. The actual alternatives 
at any quantum process are finite, and the continuum of states out of 
which the measurement process picks one are in a different category, being 
"possibilities." 

We, too, postulate entities that would be disallowed by Bohr's form of 
operationalism. We are equally concerned to find a comprehensible and 
still profound replacement for the "observation metaphysic," and claim to 
find it in the individual process. 

Let us imagine a universe containing elementary entities which we 
may think of as our counterparts of the Urs. To avoid confusion we will 
amend the terminology and call them Schnurs (German for "s t r ing")- -a  
term that appropriately suggests computing concepts, in a way that repre- 
sents their most fundamental aspect of concatenating strings. The Schnurs 
are discrete, and any representation they may have is two-valued. Consider 
a definite small number of them. Consider an elementary creation act as a 
result of which two different Schnurs generate a new Schnur, which is 
again different. We speak of this process as "discrimination." By this 
process, and by concatenations of this process, alone can the complexity of 
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the universe be explored. It is also necessary that a record of these 
discriminations and resulting creations be kept as a part of the structure 
defined by the Schnurs; otherwise there is no sense in saying that they 
have, or have not, been carried out. Hence we consider a new lot of 
Schnurs, which consist of concatenations of creation processes preserving 
the discriminate structure explored by the original Schnurs. The members  
of the new class are themselves constituents of the universe and are also 
free to take part  in the creation or discrimination process, and to map up 
to higher or down to lower levels. This last requirement is the stage at 
which the necessity becomes clear for a reflexive or recursive aspect to our 
model, which in current quantum theory takes the form of the "observa- 
tion metaphysics." The construction of a hierarchy of new levels of 
Schnurs is necessary to obtain an approximation to a physical continuum; 
by means of it we can ultimately speak of a physical entity in a back- 
ground of other physical entities in accordance with the requirements of 
common sense. However, it makes no sense to speak of the individual 
entities except in terms of the part  they play in the construction. Every- 
thing plays a dual rote, as a constituent in a developing process, where 
something comes in from outside to interact, and as a synopsis or con- 
catenation of such a process where the external interaction becomes 
subsumed in one new entity. 

How can a thing be both aspects at once? We do not think we are able 
at present to say clearly how it can, and we must let our model, which 
incorporates this duality, lead us forward without having a complete 
insight, as earlier theorists had to do in quantum theory. However, we are 
in a better position than current quantum theory, for we can adopt a 
strictly process view and insist that we always view the process f rom one 
viewpoint--a lbei t  a viewpoint that can, and must, change. Then we are 
freed from conceptual confusion, and we progress by considering stability 
conditions under which the limitations of our way of approaching the 
inescapable duality are compensated. Indeed, we find in the stability of the 
hierarchy levels a profound condition under which we can be sure of a sort 
of automatic self-consistency which reflects itself in the properties of 
quantum objects, and which is the basis of our interpretation of our model. 

We do not think it impossible that a mathematical  way of thinking 
will emerge in which the dual function can be comprehended without the 
device of considering the structure of the universe from one point at which 
the decision making is occurring. One might revert to a more classical or 
synoptic mathematics. However, we do not think we can do it at present 
[though Parker-Rhodes (1978), whose work has played such an important  
part  in our model, and who feels uncomfortable with a process philosophy, 
is trying to formulate something very similar in terms of a "mathematics of 
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indistinguishables," which transcends the process aspect]. We would con- 
jecture that if such a conceptual framework ever is discovered, its proper 
field of application would be wider than physics, and that the restricted 
process view would probably be adequate for physics. 

Our view of space-t ime is constructive in the sense that there is one set 
of principles that gets us from the Schnurs to whatever approximation to 
the continuum of space we decide we need. Our scheme is also construc- 
tive in the sense that we require that any mathematical constructions that 
are needed to specify the attributes of any physical things, including the 
space continuum, shall also be so derived. In this sense the Ur theory is not 
constructive, and we have found our vital objection to it in this lack of 
constructivity. This use of the term "constructive" is stringent. We are, 
however, using it as in its locus classicus, Brouwer's theory of mathematical 
intuition (which also stimulated the development of intuitionist logic). 

Brouwer's basic concept is that of the free choice sequence. The 
formal need for the free choice sequence is to construct the continuum 
adequately. For Brouwer, the constructions of mathematics have no ab- 
solute quality but are creations of the intellect, whose validity is relative to 
the state of mathematical understanding at a given epoch. They play a part 
in guiding the development of the free choice sequences. So do other 
considerations that we should normally regard as contingent. (An example 
of Brouwer's was to make the development of a free choice sequence 
depend upon whether, at the particular time in question, four successive 
sevens were known to occur in the expansion of ~r). It would be possible 
(and Brouwer was quite open to this suggestion) to regard the totality of 
considerations that could influence free choice sequences as including the 
contingent behavior of physical systems, in which case the similarity of the 
processes in our constructive model and the basic entities with which 
Brouwer constructed his universe would be quite close. 

It would be fascinating to pursue this connection with Brouwer's 
thought, but this cannot be the place. We introduce it at all here only 
because it may be felt by some readers that our theory requires a mathe- 
matical ontology which is just wrong;  it may reassure the readers to 
know that something very like what we propose has been authoritatively 
put forward for analogous reasons in the literature of the foundations of 
mathematics. The connection is also relevant to our present discussion, 
because Brouwer's constructivism has no separate world of mathematical 
entities; the difficulty we encounter with the Ur theorists is that they allow 
themselves the use of continuous mathematical constructions where we felt 
that a constructive development should include mathematical entities used 
in the theory. 
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When one has a model for elementary processes one has to reconcile 
it with the macroscopic awareness of the world as an extended manifold of 
space and time. This is a large undertaking, which is usually not very 
explicitly faced. The traditional argument of a correspondence limit is only 
a small part of the problem for it presupposes that the problem has already 
been solved for the microscopic entities. Traditionally physicists rely on 
macroscopic experience to have universal application, and face the result- 
ing confusions piecemeal. The position of the Ur theorists is not dissimilar 
for, as we have seen, they allow themselves to introduce continuum group 
theory, which then imports the principle of interpretation of extended 
spaces. We have left ourselves no such loophole, and the problem remains 
to be tackled. 

Finkelstein's process approach also has to face this problem. Two 
arguments of his are relevant to it: (a) He has shown (Finkelstein, 1969) 
that the left-right moves of a dichotomous variable on a two-dimensional 
checkerboard generate, in the limit as the step size goes to zero, the full 
forward light cone of the Minkowski (3 + 1)-space. (b) Given any partial 
ordering relation, one can, by a theorem due to Galois, construct a lattice 
logic. If the lattice logic is that of bra and ket, then a theorem of Birkhoff's 
allows the construction of  Hilbert space from the lattice (Finkelstein, 
1979). It is not clear to us that this can meet the whole problem from our 
point of view; his approach might still end up with the commitment to 
macroscopic experience that we are trying to avoid. We hope that his 
treatment will turn out to be relevant to our problem. Certainly the 
lattice-theoretic result could be very significant in establishing a connec- 
tion with Hilbert space. 

We turn now to another difference between our Schnur theory and 
the Ur theory. This concerns the question whether we locate the reflexive 
character in the individual Ur processes or in statistical assemblages of 
them. We hold the former view, the Ur theorists the latter. The tradition is 
on our side, even though one is stretching a point in arguing as we have 
done that traditional quantum theory fails crucially at the point where it 
has to appeal to an observation metaphysic to introduce the reflexive 
character of quantum processes and yet claim support from that quarter. 
Still, the traditional argument that the essential character of quantum 
processes has to be defined for individual processes is very strong. One is 
accustomed to having to refute various facile approaches to the founda- 
tions of quantum theory by pointing out that the characteristic quantum- 
observation effect is individual and therefore cannot depend upon a 
statistical effect. For  example, in the photon-splitting experiment, the 
incident beam can be attenuated to such a degree that the incident photons 
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would have to be treated individually, and therefore could not interfere. 
Yet interference does take place. This piece of experimental evidence 
provides a very sharp refutation of any view whose attribution of simple 
atomic properties to the photons is subject to the restriction that one may 
consider only statistical distributions of these; von Weizs/icker's distinction 
between possibility and probability in conjunction with his principle of the 
finite alternatives allowed by the Ur's is used to explain why the Ur theory 
is not in this class [J. H. M. Whiteman (1971) introduced a concept that he 
called potentiality to achieve a similar end.] However, this matter is crucial 
and one feels that the detailed mechanics that makes a statistical effect 
appear as an individual one should be presented. We think that our model, 
in which the effect is individual, has a crucial advantage, and that this 
advantage is a direct consequence of our constructive approach. 

In all other respects, we find ourselves in complete agreement with the 
analysis of the use of probability that yon Weizs/icker (1978) has under- 
taken. Probability is closely related to the concept of time in the quantum 
physics context. The concept of time that is commonplace in modern 
philosophical writing, and which owes more to Hume than to any other 
thinker, seems to be in conflict with a good deal of the thinking of 
physicists. Starting with Galileo, the time of physicists is based primarily 
upon the analogy between time "displacement" and displacement in space. 
Our model has developed partly from discussion that was designed to show 
that in a discrete approach one might have the advantage of adopting the 
Humean point of view without outrage to physical theory. Then one could 
take the past simply as the fixed domain and the future as the domain of 
uncertainty and of probabilistic inference. This point of view can be 
tagged "Fixed Past, Uncertain Future" (Noyes, 1975, 1976, 1977). 

It is obviously tempting to identify the duality of function of our 
elementary discriminators or Schnurs with the duality of description in 
complementarity. Certainly the two are connected, but the connection is 
not simple, as must be clear from the foregoing discussion of the dif- 
ferences between our view and current quantum theory. Bohr's view of 
complementary descriptions seems to be very much a special form of a 
more general philosophy and to have had its special form dictated by the 
special form in which quantum physics has developed. It is probably safe 
to say that if one could state the general philosophy without such special 
reference, it would contain the reflexive or recursive character with which 
our discussion has been concerned. However, Bohr's philosophy has 
proved notoriously difficult to state in this bare form in spite of the best 
efforts of fifty years. We conclude this section by stating what we feel to be 
the reason for this recalcitrance. 
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In a discrete or finite theory it is not too perplexing to introduce a 
reflexive philosophy by using a recursive mathematical  model, which is 
what we do. The really perplexing difficulties seem to appear if we 
associate this reflexive character with an observation imagined against an 
objectively existing background, as is done in so-called "measurement  
theory." Two incompatible principles are being appealed to. One principle 
requires entities in the universe to be constructed using the observation 
process; the other takes a realist view of them. Not  surprisingly, no 
reconciliation of the resulting perplexities is achieved by studies at a 
technical level where fundamental  principles tend to be assumed rather 
than discussed. 

One question has been avoided till now. In our model the elementary 
entities have a dual function. One of the dual aspects is analogous to that 
of an observing system. Do we imagine that this aspect of its dual role 
would correspond to the quantum theoretical "observation," and if so how 
would we react to those writers on quantum theory who wish to see 
something irreducably mentalist in the observation? In reply, we would 
first observe that we are not compelled to answer this question before we 
can use our model. We have a model for interactions which are elementary 
(Ur) in the sense that all we know is built up f rom them, and we have an 
interpretation for the model in terms of scattering processes. This interpre- 
tation does not have to be the only one. We have tacitly assumed that the 
conditions of high energy are favorable for exhibiting the simplicity of the 
model and hence the scattering situation. However, under other conditions 
the interacting entities might even be living organisms with consciousness. 
The model should still apply. What  we absolutely are not either compelled 
or allowed to say is that the phenomenon of consciousness as a separable 
ingredient is necessary for the interaction. 

2. C O N S T R U C T I O N  OF T H E  H I E R A R C H Y  

In this section we develop the specific formalism by which we are 
implementing the program discussed above, using a very explicit repre- 
sentation of the abstract hierarchical structure. The mathematical structure 
itself is developed in group theoretic language in the Appendix. Our basic 
elements are the existence symbols 0 and 1, and our basic mathematical  
operation is symmetric difference or addition modulo 2 : ( 0  + 0 = 0, 1 + 0 = 
1, 0 + 1 = 1 ,  1 + 1 = 0 ) .  The symbols are grouped as ordered sets ("col- 
umns") of height n (n = 1,2,3 . . . .  ). The comparison between two such 
columns is called "discrimination." Each column x, whose height we can 
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indicate by writing (x)n for x, has elements ("discriminators") x i (i--- 
1 . . . . .  n); thus x = ( x i )  n. A column with every element xi----O is called a 
"null" column. The basic binary operation of discrimination between two 
columns x,y of equal height is defined by 

D . ( x , y )  = x + y = 0 , ,  + y , ) .  (2.1) 

The concept of such discriminators is abstracted from the more familiar 
idea of discrete quantum numbers, while the discrimination operation itself 
can be viewed, as we will discuss in another section, as an abstract model 
of a general scattering ("production") process in which the result of 
scattering two different systems is a third system that differs from either. 
Our mathematical model thus describes chains of atomic or elementary 
processes. Our policy for presenting the theory is first to establish a 
correspondence between the mathematical model that describes these 
chains of processes and the familiar structure of quantum numbers. In this 
way we can first view the mathematical model as providing a classification 
scheme. The basic dynamics of our theory is represented during the 
construction of this classification scheme by the concept of discriminate 
closure. We introduce this concept by the following argument. 

Starting with columns of a given height, we imagine new columns 
formed by concatenating a sequence of them. Entities corresponding to the 
new columns are said to constitute a new level in the hierarchy. There is no 
difference between the new and the old in logical type; the only difference 
is that the boundary between the observing system and that which is 
observed has changed. The great conceptual and mathematical difficulties 
of such an idea can be handled in one special case, which is therefore of 
great importance. This case is that in which the entities at the new level 
represent all combinatorially possible concatenations of entities at the 
previous level, starting with a given set. Hence we get a discriminately 
closed subset. 

A "discriminately closed subset" or DCsS consists of one or more 
nonnull columns, such that discrimination between any two distinct col- 
umns in the set yields a member of the set. Assume that we start from a 
basis o f j  linearly independent columns, that is, columns for which no sum 
of two or more different columns is null. Then there will be 2 j -  1 distinct 
discriminately closed subsets. Symbolizing a DCsS by ( }, a basis of two 
columns a,b gives the three DCsSs {a}, {b}, {a,b,a+b}; a basis of three 
columns a,b,c gives the seven DCsSs {a}, (b}, (c}, (a ,b ,a+b},  (b ,c ,b+ 
c}, {c,a,c+a},  { a , b , c , a + b , b + c , c + a , a + b + c } .  Proof of the general 
result is immediate either by noting that the number of DCsSs is simply 
the number of ways we can combine j things 1, 2 . . . .  , j  at a time, or by 
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induction. The first step in constructing the hierarchy is then to consider 
the 2 j -  1 DCsSs so formed as the basic entities of a new level. 

The reason for seeking a constructive process of hierarchical nature 
that yields levels of rapidly increasing (in our case exponentiating) complex- 
ity is again abstracted from experience. We have detailed in the first 
section the reasons why we start from an elementary process (discrimina- 
tion) which already implicitly contains the "observation metaphysic." 
There we also explained why, in our view, we adopt a constructive, 
process-oriented approach. The further requirement that the hierarchy so 
generated terminate is a basic requirement if we are to retain the principle 
of finitism. We defer the discussion of the reflexive character of the scheme 
until it is further developed. That  the combinatorial hierarchy obtained by 
starting with columns of height n = 2 yields levels of interesting physical 
structure and sufficient complexity, and terminates at the appropriate 
level, has been shown previously (Bastin, 1966). We summarize the con- 
struction here. 

We have seen that, given j linearly independent columns, we can 
always construct 2 j - 1 DCsSs at that level. For  them to form the basis of a 
new level, however, they must themselves be representable by linearly 
independent entities that contain the same information about discriminate 
closure as the sets themselves. For  this purpose we introduce multiplication 
modulo2 and matrices because linear operators preserve discrimination. 
We look for 2 j -  1 matrices which (a) map each column in one of the 
subsets onto itself and onto no other column; (b) map only the null 
column onto the null column, and hence are nonsingular; and (c) are  

linearly independent. Provided this can be done, and the original basis 
consists of columns of height n, then the matrices themselves can be 
rearranged as columns (e.g., by putting one row on top of another by some 
consistent rule), and will then provide a linearly independent basis of 2 j - 1 

columns of height n 2. Such mapping matrices are easy to find for n = 2 (see 
below). Explicit examples have been found for n--3,  4, and 16 (Noyes, 
1978) proving the existence of the hierarchy. A formal existence proof has 
also been provided (Kilmister, 1978) based on unpublished work (Amson, 
1976). 

The use of matrix algebra could be misunderstood as implicitly 
incorporating into the scheme the basic assumptions of linear algebra. In 
fact, matrix algebra using the symbols 0, 1, discrimination, and multiplica- 
tion mod2 is the natural extension of the discrimination idea to incorpo- 
rate mappings. This can be seen in more formal terms by following the 
group theoretic discussion given in the Appendix. 

We can now present the general situation. We have seen that if at 
some level l there are j(l) linearly independent columns of height n(l), we 
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can construct immediately d ( l )=2  y(z)- 1 DCsSs. Provided these can be 
mapped according to the restrictions given above, they form the basis for a 
new level with j ( / +  1) = d(l) and n(l+ 1) = nZ(l). The process will terminate 
if n2(l)<2 j(l)- 1 since at level l there are only n2(l) linearly independent 
matrices available; clearly this will always happen for some finite n. The 
situation for n(1)=j(1)= N, i.e., when the vectors at the lowest level which 
span the space are used as the basis, is exhibited in Table I. Thus, perhaps 
surprisingly considering the simplicity of the assumptions, the hierarchy 
with more than two levels turns out to be unique. See the Appendix for a 
more detailed discussion. 

Although the cardinal numbers given by the hierarchy are unique, the 
specific representations used in the construction are not. It is important to 
understand this clearly because it is a complication in making any simple 
interpretation of the discriminators as representing the presence or absence 
of particular conventional quantum numbers in an isolated system. This 
ambiguity is present at the lowest level since for the two basis columns we 
have three choices: a= (~ ) ,  b = ( ~  a'=(ol),  b '=( l l ) ;  a "=( l l ) ,  b " = ( ~  
Corresponding to these three possible choices of basis, there are three 
different sets of mapping matrices. When, as here, the number of indepen- 
dent columns is equal to the height of the columns (n =j) ,  the maximal 
discriminately closed set (MDCS) contains all the nonnull vectors in the 
space [here it is ((~), (0), (I)}] independent of the choice of basis; further, 
the only possible mapping matrix for the MDCS is then the unit matrix. 
For the first basis, the mapping matrices for (a} and {b} are (o11) and 

TABLE I. The Possible Hierarchies Starting f r o m n ( 1 ) = j ( i ) = N  

Hierarchy terminates 

l 1 2 3 4 because 

N = 2  n(l) 2 4 16 256 

j(1) 2 3 7 127 (256)2<2127_1 

3 7 127 

9 

d(l)=2 j ( t ) -  1 2127- 1~103s 

N = 3 n(l) 3 
j ( l )  3 7 
d(l) 7 127 

N = 4  n(l) 4 16 
j ( l )  4 15 
d(l) 15 215-  1 

92< 127 

162<215-  1 

N > 4 n2(1) < 2 j ( O -  ! 
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(llO), respectively. For  the second a = a', so that matrix is the same but the 
01 . mapping matrix for {b'} is (1o), for the third we note that a ' =  b' and 

b" =b .  Rearranging the matrices as columns then give three different 
possible bases for the second level of the hierarchy, namely, with the rule 

DB ! 

Ill lil tit il [i1 lit a 2  = 1 , b 2  ~ .  , c 2  = ; a2, = , b2, _~ 1 , c 2  = ,  ," 

0 

I1 l l  / l  

a 2 = b 2 - -  , c 2 - -  (2.2) 

In addition to this ambiguity, there is the further problem that we 
could have used any other rule for converting the matrices into column 
vectors, provided only the same rule is used for all three matrices. Thus the 
ordering of the rows has no significance, and within a level the properties 
of the system under discrimination are unaltered by a permutation of rows 
in the basis. An important structural property which does emerge, how- 
ever, is that instead of the basis of three unit columns such as (1000), 
(0100), (0010), or any linearly independent set constructable on such a 
basis, at least two of the columns in the basis always contain two ones in 
the same two rows. This property guarantees that the MDCS (up to a 
permutation of rows) at the second level will always be 

1 , , 1 , 1 

1 

I!ll ]} (2.3) 

Note that the first two rows may always be written as (11) or (0~ We shall 
find this fact significant as a clue to physical interpretation. (Note that 
"rows" always refers to places in a column even though columns may be 
printed vertically or horizontally for purely typographical reasons.) 

When it comes to constructing mapping matrices for the second level, 
we cannot use the unit matrix to represent the MDCS given in equation 
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(2.3) because it maps all 15 possible nonnull columns of height 4 onto 
themselves, and not just the required seven. The eight columns that must 
be excluded are of the form (10xy) or (01xy). A nonsingular matrix that 
has none of these as eigenvectors, but all the columns of equation (2.3), is 
exhibited in equation (2.4): 

[o,o, o o 
a 0 0 1 

0 0 0 

= , b , c , d  

l e'J'~ J 
:# , 

X ' = I + x ,  a ~ 0  b , c , d  

e , f , g  

[i 1~ !lfli]ll]I1]I ~ 1 7 6  b 0 0 1 c 1 0 1 
0 1 1 0 0 1 
0 0 0 0 0 1 ~ 

0 1 
0 0 
1 0 

1 o o~ o~176 [!l o 
d 0 1 0 1 

0 0 1 0 
i]tli 11 e o~176 o~ 1 l lfli]t 

l 00 01{[01tlim 0 0 0 o0 lf[lJ 0o 
f 0 1 1 1 g 1 1 0 0 

1 0 1 0 1 1 1 1 

(2.4) 

Choosing as a basis the columns (1100), (0010), (0001) we also exhibit six 
specific mapping matrices which have as eigenvectors only the columns in 
the six remaining DCsSs. This representation is not unique, since we find 
that of  the 35 possible choices of three columns as a basis, omitting those 
that are not linearly independent or that are equivalent to others under a 
permutation of rows, there are 15 alternative choices. However, all of them 
have more than four descriptors in the three columns, so the choice 
exhibited is in that sense the simplest. 

In order for these seven mapping matrices to form a basis for 
constructing the 2 7 _  1 = 127 DCsSs of level III, they must be linearly 
independent. The linear independence is exhibited explicitly in equation 
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One then forms the 127 DCsSs, and finds nonsingular mapping matrices 
for each of them. This is done by leaving the first six rows of this basic 
matrix untouched--which guarantees that none of the unwanted columns 
from the 128 are brought back as eigenvectors--and adding ones one at a 
time to the remaining structure in such a way as to restrict the eigenvector 
set. Care must be used not to make the matrix singular and to maintain 
linear independence. The procedure is straightforward, if somewhat tedi- 
ous, so the explicit result will not be given here. This empirical procedure 
thus proves the existence of all four levels of the hierarchy. 

3. LEVELS 0, I, II, AND III: BARYONS, MESONS, LEPTONS, 
AND PHOTONS 

In this section we attempt to correlate the mathematical structure 
developed above with some facts known from elementary particle physics. 
Because any physical process requires development of the hierarchy 
through the levels successively, the significant physical magnitude is not 
the cardinal of each level separately, but rather their cumulative sum, 
which gives the sequence 3,10,137,137+2127- 1~1038. Obviously these 
numbers could be interpreted immediately as the inverse of the super- 
strong, strong, electromagnetic, and gravitational coupling constants and 
suggest that in some sense the cumulative levels refer to systems of bosons 
with increasingly refined definitions of their possible interactions. One way 
to make this more specific would be to assume that the various systems at 
each cumulative level all have equal a priori  probability, and that the 
probability of "coupling into" any one of them by the characteristic 
described at that level is therefore the inverse of the corresponding num- 
ber. We will give this vague idea of coupling more specific content shortly. 
Further, the fact that the first three levels can be mapped up or down 
freely, but that any attempt to construct a linearly independent representa- 
tion of the fourth level with 2127- 1 DCsSs must fail after (256) 2 linearly 
independent matrices have been selected, suggests that the destabilization 
of particle systems due to weak decay processes with coupling constant 
10-stay might also emerge from the scheme since 1//(256) 2 has approxi- 
mately this value (Bastin, 1966). This requires us to assume that the unit of 
mass in the scheme is the proton mass, but this is already clear from the 
initial sequence, since ~ 1 0  -3s is the gravitational coupling between two 
protons; the gravitational coupling constant between two electrons is 
l0 -44. Thus we can hope to derive the ratio of the electron mass to the 
proton mass once the scheme is sufficiently developed. 

We are now in a position to state our policy toward the general 
question of the physical interpretation of the hierarchy so as to be 
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consistent with the identification that has already been made of the basic 
scheme of cardinal numbers with dimensionless constants. This policy has 
two aspects. First we have the task of identifying the quantum numbers 
with configurations in the hierarchy, and secondly, we have to introduce 
fields corresponding to the quantum numbers, and show that we should 
expect these fields to have the characteristics that we find in nature. The 
second task will be coterminous with that of defining an extended space 
for the particles to  be "'in." Only the first task is confronted in this section. 

We wish to identify places in columns with quantum numbers, and we 
wish to regard associations of quantum numbers in given columns as 
systems which, under conditions of stability that have yet to be established, 
will carry over unchanged into stable or unstable particles. For the 
moment we call them "systems." These ends require us to solve the 
following problems: 

(1) How to get an initial distinguishing characteristic of a column 
which is available for taking the first step in interpretation in the sense that 
it cannot be eliminated by choosing a different basis. 

(2) How to interpret the interrelations of columns in a set (including 
of course a DCS) at one level. 

(3) How to relate the interpretation of a column at one level with that 
of columns of different lengths and hence different quantum numbers at 
another level. 

The first step in the solution of these problems is to define conserva- 
tion in respect of a set of properties to each of which a quantum number is 
conventionally assigned. These are the eight properties (1) of having z 
component of spin up, (2) of having z component of spin down, (3) of 
having charge + ,  (4) of having charge - ,  (5) of being a lepton, (6) of 
being an antilepton, (7) of being a baryon, (8) of being an antibaryon. 

It makes things clearer to begin by speaking of properties and only 
later of the dichotomous variables that can correspond to quantum num- 
bers. The latter require two rows to represent them. 

Definition. A quantum number will be said to be conserved if the 
algebraic difference between the number of ones in the corresponding pair 
of rows of properties is constant at each step in the generation process. 

The choice of the foregoing definitions (in particular that of the 
conserved quantities and of their relation to descriptors) embodies a lot of 
detailed argument whose correctness must be judged by the coherence of 
the resulting scheme. Moreover the choice of quantum numbers assumes 
the emergence of discrete quantities through the history of the quantum 
theory so that the theory is now at a stage that makes it ripe for 
combinatorialization. Thus in particular the use of the z component of spin 
as the appropriate quantum number for combinatorialization is obscured 
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by the spatial idea of spin, but  it is becoming more perspicuous as the 
"helicity state"; we stick to the earlier term. 

Our definition of conservation introduces two novelties in principle. 
One is that of forming the algebraic sum of a set; the other is that of a 
primitive notion of simultaneity. The two are related since in forming the 
sum one is making an assertion about  what is true collectively of the set at 

each step. The change is considerable since one abandons the principle of 
individual access in enumeration; although this change is already implicit 
in the hierarchy construction itself, it is appropriate to introduce it here 
with the motivation of the very fundamental  idea of conservation. It  is also 
at this point that we see the root of an idea of sequential delay that will 
take us from a purely sequential theory to one with a more conventional 
space and time. However, having recorded this starting point, we will not 
attempt to develop it further now. 

We notice in the above account that all the structures that are going to 
be interpretable (dichotomous variables) require representation by two 

rows, so that systems of one row are not given a meaning. This principle 
already exists as a matter  of logical necessity in the hierarchy construction 
- - a  correspondence that indicates satisfactory coherence in the theory as a 
whole. (The level of single elements cannot generate a hierarchy.) It 
follows that at level II the 4-columns are properly regarded as a pair of 
pairs. 

We now return to the set of problems posed above. To handle the first 
p rob l em- - tha t  of initial in terpreta t ion--we first draw attention to the 
"doubled discriminators" of Section 2, which we have shown must exist in 
the mapping construction. We note first that this asymmetry is already 
enough to refute the criticism that since one can always take a minimal 
basis using only columns of the form 

0 0 1 
0 

�9 . . . ,  

1 
1 0 0 

and since row position is arbitrary, no interpretation that depends on 
relative position of ones can be significant�9 In fact we cannot always take 
such a minimal basis; we are therefore justified in beginning our interpre- 
tation with a nonminimal basis, and in particular with one in which we 
have the doubled discriminators which we have shown to be necessary. 

The doubled discriminators enable us to develop a notation for 
putting together two systems, each of which is described by a dichotomous 
variable; we shall use spin as our first example (Bastin, 1976a). In Table II 
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TABLE If. Triplet-Singlet System from Two Dichotomic Vectors 

463 

Conventionalnotation Hierar~ynomtion 
S=I S=0 S=I S=0 

g = l  0 -1 &=0 ~=1 0 -1 ~ = 0  

Ii)  Ii] Iil  Iil Iil (il Iil Ii] 
we assign the first two rows to indicate spin up or spin down of one system, 
and the second two rows to refer to spin up or spin down for the other sys- 
tem. The resulting singlet or triplet states are represented in Table II both in 
the conventional notation using algebraic vectors and in the hierarchy nota- 
tion using only existence symbols. We see that the descriptive content of 
the two notations is identical so far as distinguishing the four possible 
singlet or triplet states goes. We also note that the singlet state is the null 
column; we can only give meaning to such a state in a richer system with 
more rows containing nonnull descriptors. 

The spin-z state refers to a single system of spin 1/2 (which can be up 
or down) for which the algebraic notation is (~) or (0). A singlet/triplet 
system is either a spin-0 system with one state and a spin-1 system with 
three states, or the composition of two sp in- l /2  to give the same result. 
The conventional notation for the result is given in Table II in comparison 
with our notation. 

We have shown the above identification to be possible and consistent 
with the idea of conservation; we have not shown it to follow necessarily 
from the existence of doubled descriptors. The latter demonstration re- 
quires a new physical principle. In addition to the association of two 
existence symbols to make one dicotomous variable, we have encountered 
the association of two identical existence symbols in two rows to make an 
effective single existence symbo l - - a  development that was forced by the 
necessary occurrence of "doubled descriptors." If we were to exploit, at 
level II, the full possibilities of the increased scope in our descriptive 
language offered by treating each row as independent, we would get 
1 6 - 1 =  15 possible systems. The mapping construction allows only 7 of 
these, consisting of one doubled existence symbol and one dichotomic 
variable. We see this more clearly if we enumerate four cases: 

(I) Triple existence symbol plus single existence symbol. This is iso- 
morphic to the basis for level I and gives nothing new. 

(II) Triplet system exhibited in Table II. Since we are considering a 
system of four rows, the singlet possibility effectively represents nothing 
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and is excluded. Further, we see that triplet system is simply a doubled 
representation of level I and again gives us nothing new. 

(III) The doubled existence symbols together with the two-row di- 
chotomous variables already exhibited in (2.3) is the unique MDCS forced 
by the hierarchy construction. 

(IV) The maximum set, obtained by treating each descriptor indepen- 
dently, is excluded by the hierarchy construction. We are thus limited to 
case III, which exhibits the necessity of the interpretation. 

We have used conservation as the basic interpretive principle. We 
have yet to display this in the context of the sequential dynamics of 
step-by-step discrimination which is implied in speaking of conservation. 
We approach this problem for the first three levels of the hierarchy by 
interpreting sequences of discriminations as the flow of quantum numbers 
through sequentially ordered "Feynman diagrams." As we will see below, 
the direction of the sequence has to be established external to the hierarchy 
as part of our construction of a finite representation of "space- t ime" 
which could, sometimes, approach conventional space-t ime in a large 
number regime. 

The basic postulate by which we convert the symmetric discrimination 
operation x + y  = z = y  + x into a partial ordering is to assume that when 
the discrimination occurs between two identical columns, i.e., when x + x 

0, there is some externally established criterion, which eventually is to be 
established recursively, by which the two x's are assigned to different sets. 
Our justification for this assumption is our equally basic postulate that the 
nonnull descriptors in a column refer to conserved quantum numbers. This 
is clearly impossible in the case at hand if both columns are on an identical 
footing, since then the symmetric operation would destroy quantum num- 
bers. Abstracting from the empirical structure of elementary particle 
physics, we assume that x + x = 0 refers to a particle and an antiparticle 
which, so far as quantum numbers go, can indeed annihilate each other if 
they have opposite charge, opposite baryon number, opposite lepton num- 
ber, and equal but opposite helicity ("z component of spin"), and no other 
distinguishing characteristics. This idea has yet to be worked out in 
deductive mathematical terms. Here we work it out, level by level 
through the first three levels of the hierarchy, using a diagrammatic 
technique abstracted from the familiar rules for Feynman diagrams. 

Consider first a "universe" consisting only of identical columns x. 
This we call "level 0" of the hierarchy, since it clearly can be modeled by 
sets of "columns of height one" consisting of sets of the existence symbol 
1, or the null 0. Notationally we represent the basic discrimination 1 + 1 - 0  
by Figure la, where the first 1 stands for a "particle" represented by the 
solid line and the second 1 stands for an "antiparticle" represented by the 
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Fig. 1. (a) Level-0 discrimination interpreted as a particle-antiparticle diagram. (b) Level-0 
sequentially ordered discrimination as particle or antiparticle. (c) Unique level-I DCsS as a 
particle-antiparticle-quantum vertex. (d) Sequential ordering of the level-I vertex. 

dashed line. To make this into an ordered relation we assume each line has 
a "direction" relative to some externally established sequence of dis- 
criminations, which we indicate by placing an arrowhead on the line. The 
interpretation that conserves the (single type of) quantum number is then 
that both lines are "incoming" or "outgoing" as in the left side of Figure 
lb. We now adopt the Feynman rule that a particle moving "forward" is 
the same as an antiparticle moving "backward." Since there is only one 
type in our level-0 "universe" we reverse one arrow. Then the discrimina- 
tion has no effect and the universe consists only of particles moving 
forward (or of antiparticles moving backward). This is truly a Parmenidean 
universe in which there are no scatterings and nothing happens. In a 
broader context with higher columns, our (now ordered) discrimination 
makes a partial ordering selecting sets of "identical" columns with an 
"orthogonality" relation. So far as we can see, if this were all we had, we 
would have precisely the model  discussed by Finkelstein (1977, 1979) - -an  
"emission" followed by an "admission" which taken together form a 
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detection which, when null, corresponds to the failure to de tec t - -a  partial 
ordering in which the "particles" continue to "move" undisturbed. But our 
structure is more complicated, as we will see shortly. An alternative to 
introducing an ordering relation might be to develop a metalanguage in 
which we can retain the nonordered discrimination operation; as we 
understand it, this is what Parker-Rhodes (1978) has done in his theory of 
indistinguishables, which allows the discussion of "twins" that are individ- 
ually indistinguishable, and that cannot be ordered, but which allows the 
assignment of cardinal numbers to sets composed of them. We believe the 
route followed here is more consistent with our basic process philosophy. 

We now proceed to level I, where we have three nonnull columns that 
can be symbolized as follows: (~) by , (0) by . . . .  , and ( I )  by 
~x/x_~. We can symbolize the unique MDCS by the discrimination dia- 
gram given in Figure lc. As a nonordered discrimination diagram this is to 
be interpreted as representing the fact that discrimination between any two 
of the columns yields the third. As a Feynman diagram with all three lines 
either incoming or outgoing (Figure ld) there is still no internal way to 
assign order. If, however, we assign a sequential direction externally, and 
use the Feynman rule, we obtain six possibilities also given in Figure ld. 
There is now a structural difference compared to "level 0," because we 
now need a rule to say what happens to the two rows when we reverse the 
direction of the arrow. We see that to conserve quantum numbers we must 
interchange the two rows. 

Now physical interpretation becomes possible. Row one represents 
one dichotomic variable, or conserved quantum number, whose presence 
or absence is indicated by the exitence symbols 1 or 0, respectively. The 
second row represents a second distinct dichotomic variable. In order that 
both quantum numbers be conserved, they must be conjugate in the sense 
that reversing sequence interchanges rows. The simplest choice for inter- 
pretation, following Eddington's insight that the basic quantization is that 
of charge, is that the two quantum numbers are simply positive and 
negative unit electric charge. Then our rule that reversal of sequence must 
be coupled to interchange of rows translates to the usual Feynman rule 
that a positive particle moving forward "in time" is equivalent to a 
negative particle (antiparticle) moving backward "in time." Note that in 
contrast to (~) and (0) the column (~) is self-conjugate, and we are free to 
assign it either direction until we have sufficient external structural infor- 
mation to specify that direction in another way. 

High-energy physics allows us to provide an experimental model 
isomorphic to this lowest level of the h ie rarchy--a  hydrogen bubble 
chamber in a magnetic field with a beam of antiprotons incident. Protons 
curve one way and antiprotons the other way, distinguishing the two 
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quantum numbers. Annihilation produces electrically neutral quanta that 
leave no tracks in the chamber but whose presence can be inferred by the 
appearance of proton-ant iproton pairs that can be spacially correlated 
with kinks in the tracks. A more detailed working out of this operational 
definition of quantized particles has been given elsewhere (Noyes, 1957). 
Such experiments provide direct empirical evidence for the quantization 
and conservation of unit electric charge. Note that the direction of the 
tracks must be inferred from external information on which side of the 
chamber the beam er~ters, or internally by the relation between density of 
bubbles along the track and velocity or energy. Relativistic kinematics 
allows the specific case when particle, antiparticle, and neutral quantum all 
have the same mass to be made into a model in which the three bind 
("bootstrap") to form a single particle of the same mass and charge as one 
of the three, as has been discussed elsewhere (Noyes, 1979). 

By such external considerations, we can talk about the ordered 
vertices of level 1, symbolized in the figure by (q~ since they will eventually 
become time ordered scattering vertices, a n d i h e  nonordered (I), which 
represents the unique DCsS of level I. But it is easy to see that if we start 
with an arbitrary statistical assemblage of all three possible columns and 
all "directions," on the average nothing will happen. There will be the 
(unobservable and ignorable) discriminations of "level 0," and level I 
vertices with as many incoming as outgoing lines. Charge is conserved in 
the microscopic processes, and hence for the system as a whole. Any 
asymmetries would have to be established externally. This "universe" is 
still Parmenidean so far as observable consequences go. 

When we go to level II the situation changes. If we represent columns 
(1 lxy) by --=:--, and columns (OOxy) by ~ the seven DCsSs of Equation 
(2.4) can be pictured by the seven discrimination diagrams given in Figure 
2. To convert these to ordered diagrams that conserve quantum numbers, 
we see that rows 3 and 4 are isomorphic to level I, and that we must 
interchange these two rows when we reverse the direction of an arrow. But 
rows 1 and 2 are self-conjugate and act within this group of seven columns 
like a single new dichotomic variable which is either present or absent. But 
now we have eight additional columns (10xy) and (01xy) outside the 
hierarchy. Under our basic statistical assumption that initially all columns 
have equal probability, and that all rows are to be interpreted in terms of 
conserved quantum numbers, we see that we have added not one but two 
new dichotomic variables. Further, they also can form DCsSs, as we can 
see for example in Figure 3, ignoring for the moment the arrows. If, as we 
did within the hierarchy, we assigned all lines as incoming (or outgoing) 
the quantum number in the first row would be annihilated, contrary to our 
basic interpretive postulate. Hence, for these new vertices we must, in order 
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Fig. 2. (a) Unique level-II MDCS as a discrimination vertex within the hierarchy. (b)-(g) Six 
DCsS of level II in a particular representation as discrimination vertices within the hierarchy. 

to conserve quantum numbers, assume that we have one incoming and two 
outgoing arrows. Then for any sequence of processes involving all 15 
nonnull columns, and ordered vertices when (10xy) or (01xy) are involved, 
all four dichotomic quantum numbers will be conserved, provided (in our 
specific representation) we interchange both row 1 with row 2 and row 3 
with row 4 when we change the direction of an arrow. 

How are we to interpret this situation physically? We claim that the 
structural characteristic of the hierarchy--which,  as proved in the last 

Fig. 3. Two level-II vertices outside the hierarchy sequentially ordered to conserve quantum 
numbers; the two shown can be interpreted a s  the emission or absorption of a charged 
quantum by a baryon. 



Combinatorial Hierarchy 469 

section, necessarily doubles one descriptor in the basis used for construct- 
ing level II-- implies two different types of dichotomic quantum numbers 
at level II. Since one pair is isomorphic to level I, we retain the identifica- 
tion of this with electric charge. The second we propose to interpret 
as baryon number in row 1 and antibaryon number in row 2. The 
seven columns within the hierarchy can then be interpreted as four 
baryon-ant ibaryon pairs B + B ~ 1 7 6 1 7 6  ~ and three quanta 
Q +, Q-+, Q - .  We also have the start of a sequential dynamics because of 
the necessity of ordered vertices once we deal with single baryons. If we 
identify these with nucleons and antinucleons, and the quanta with 
charged and neutral mesons, we have a crude model for nuclear physics. 
We will not develop this here, as we have a more specific calculation closer 
to reality to present in level III. Note also that, again by use of the bubble 
chamber, it is possible to distinguish baryons from mesons since, empiri- 
cally, the number of baryons minus the number of antibaryons is con- 
served, while the number of mesons is not; charge is, of course, still 
conserved. A little thought should convince the reader that our rules 
guarantee this contact with experiment. 

We wish to emphasize here the structural features of the hierarchy 
which allow this comparison with experiment. Suppose we ignored the 
doubling of one of the descriptors in going from level I to level II. Then we 
could model the 23 - 1 = 7 DCsSs with columns of height 3, e.g., the basis 
(100),(010),(001) which would put all three rows on the same footing. 
Quantum numbers could be conserved, and the DCsSs mapped by 3 • 3 
matrices, which would then give 27 -  1 = 127 DCsSs of columns of height 9. 
But these cannot be mapped bjr the 9 x 9 = 8 1  linearly independent 
matrices available; this hierarchy terminates too quickly. Another alterna- 
tive would be to use the 24 -  1 = 15 DCsSs constructed from columns of 
height 4, e.g., using the symmetric basis (1000), (0100), (0010), (0001), which 
again makes all rows indistinguishable. These again can be mapped and 
provide a basis for 215- 1 DCsSs of columns of height 16; again these 
cannot be mapped by the 16•  linearly independent matrices 
available, so this also terminates too quickly. Only the asymmetric basis 
obtained from the mapping of level I allows the continuation to both level 
III and level IV. Further, as we have seen, this asymmetric basis, by 
distinguishing between columns inside and outside the hierarchy allows us, 
for the first time, to introduce meaningful sequence along with conserva- 
tion. Thus, discrimination, conservation, and the existence of DCsSs that 
can be mapped at a single level are even conjointly not enough. We must 
use the unique hierarchy construction to get a rich enough physics without 
additional postulates. When we do, we are rewarded by finding a structure 
that can be interpreted as exhibiting the asymmetry between baryons and 
mesons that lies at the core of all nuclear theory. 
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Going now to level III, we have seen in equation (2.5) that we have a 
representation of the seven basis columns with one quadrupled and six 
doubled descriptors. Here we are not on so firm ground in interpretation, 
because this representation is no longer unique, and we have to argue 
instead that it is the simplest and most symmetric representation we can 
construct. But we believe, though we have not proved, that any level-III 
representation will have a quadrupled descriptor. Guided by the hypothesis 
that the third level, being stable, should contain quantum numbers corre- 
sponding to the absolute conservation laws of charge, baryon number, 
lepton number, and helicity ("z component of spin"), and our successful 
handling of the doubled descriptor as baryon-ant ibaryon quantum num- 
bers at level II, we assume that the quadrupled quantum number repre- 
sents a baryon-ant ibaryon pair in conjunction with a lepton-anti lepton 
pair. Then, following the scheme given in Table II, two of the doubled 
descriptors represent the four spin states obtained by putting together a 
sp in- l /2  baryon with a sp in- l /2  antibaryon to form a singlet-triplet 
system, two of the doubled descriptors correspond to putting together (the 
same) baryon antibaryon pair to form a singlet-triplet isospin system, and 
the last two doubled descriptors to the singlet-triplet spin system obtained 
from sp in- l /2  lepton and a sp in- l /2  antilepton. Explicitly, the 16 column 
of equation (2.6) is then (B,  B , l , l ,  - +,s  s- ,s~+ ,s~- ,t s "+ ,t s'- , t~ '+,i~,sl+,sj- ,s~-,s f  ). 
Anyon e familiar with Feynman rules will see immediately that if we 
interchange rows pairwise when we change the direction of an arrow, we 
have the usual rule that spins, particle-antiparticle designation, and charge 
reverse under time reversal, and that we can conserve quantum numbers in 
the same way we did at lower levels. 

The physical interpretation of the individual states in the hierarchy is 
now straightforward. When we have (1111...) we have 16 spin states X4 
isospin states or 64 in all. Note that we now have to talk about conserva- 
tion of the "z component of isospin," which is equivalent to charge 
conservation in this context. Note also that we are referring to helicity 
rather than "spin" in a 3-space or 4-space sense. This is not to carry any 
implications about "rotations" until we have constructed some discrete 
approximation to "space-t ime,"  which we have yet to do. The (0000.. .)  
columns are also easy to interpret. Three of them carry isospin without 
spin, like pions; nine of them carry both spin and isospin, like the three 
spin • three charge states of the p mesons; three have isospin zero in 
three spin states like the o~ meson. All of  these 15 mesons come from 
rows associated with the baryons. The remaining three spin states 
associated with the leptons we identify with the two helicity states of the 
photon (7) and the Coulomb field. The mesons can be put together with 
the y to form 3 x 1 5 = 4 5  states. Thus the total number of states is 
64+ 1 5 + 3 + 3 X  15-- 127 as required. 
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The presence of the 7 is particularly interesting. Empirically the 
mesons all have finite mass and dimensionally speaking explore "dis- 
tances" of the order of 10-~3 cm, where many people agree our ordinary 
ideas of space-time are suspect. But the 7, being massless, has effects of 
infinite range, and in the large-number limit goes over, via the correspon- 
dence principle, to the classical electromagnetic field. One might think 
that, prior to the development of an explicit dynamics, we should not be 
able to get quantitative results from the theory at this stage. But the 
presence of the 7 and the Coulomb field in our interpretation allows us to 
discuss, at least heuristically, a remarkable calculation. 

The calculation was originally achieved by A. F. Parker-Rhodes 
(1978), who justifies his physical interpretation of the hierarchy, and of 
more extended structures, on the basis of his theory of indistinguishables. 
Unfortunately, this theory requires considerable logical development for 
consistent presentation since objects that can be counted as two when 
together, but that are truly indistinguishable when separate (called 
"twins"), cannot be grouped in ordered sets; they can, however, be 
grouped in such a way as to define a unique cardinal for the group or 
"sort." Thus a "sort theory" dealing with this possibility has to be devel- 
oped, based on the three parity relations "identical," "distinguishable," 
and "twins"--together with their negations. This requires a semantic 
theory, using two-valued logic, for discussion of the object theory, and an 
implication language, again using two-valued logic, for the statement and 
proof of theorems. However important the theory of indistinguishables 
may be, Parker-Rhodes' ideas of interpretation are inconsistent with those 
developed in this paper, and we give his deductions in an amended form. 
We expect that before very long a consistent presentation on our own 
principles will have been reached, but the form we give below is to some 
extent a compromise with conventional thinking. Our excuse for (in a 
sense) premature publication is the astonishing accuracy of the result. We 
believe that the presentation we give here is believable in terms that are 
closer to ordinary quantum mechanical usage--once one is willing to 
make the conceptual leap that allows the discussion of quantum ideas prior 
to any mention of space-time. 

We have seen that the three stable levels of the hierarchy can be 
viewed as systems carrying the quantum numbers of baryon-ant ibaryon 
pairs and lepton-antilepton pairs and the associated bosons. Since com- 
parison between any two such systems leads to a third, and all three levels 
map up or down, it seems appropriate to think of the hierarchy as 
containing all 137 possibilities with equal a priori probability. But 
to discover the actual structure, we must somehow "break into" this 
closed system, which necessarily requires a column that is not one of 
themembers of the hierarchy. The example we pick is the electron. 
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Using the specific choice of row designations already introduced, i.e., 
(B,B,l, Ls~,si,sff~,s~,i~,i~,iff~,i~,st+,sl-,s~,sT), an electron with "spin 
up" is (0010 0000 0101 1000) and with "spin down" is (0010 0000 0101 
0100). 

In order to couple this column into the hierarchy, we have to in- 
troduce some new sort of vertex that does conserve quantum numbers; just 
how does not have to be specified for our current purpose. Presumably this 
can be done in the same way that we introduced an ordered 
meson-baryon vertex at level II. The only member of the 137 columns in 
the hierarchy that does not change the electron spin or charge, or refer to 
irrelevant quantum numbers, is the Coulomb case. So we assume that the 
electron couples to this with a probability of 1/137. This member of the 
hierarchy then communicates with all the others in a random fashion, 
eventually ending up again with the Coulomb case and back to the 
electron. In this respect we view the hierarchy as resembling something like 
the "vacUum fluctuations" of quantum field theory. The reason that this 
can lead to a result is that the electron cannot coincide with those 
members of the hierarchy that contain electron-positron pairs while this 
process is taking place, thanks to the exclusion principle. Particularly since 
we have as yet not made use of the exclusion principle, an assumption 
more in keeping with our basic statistical approach (which has the same 
effect on the calculation) is that the statistical uncertainties in the concept 
of "length" at nuclear dimensions do not allow us to discuss Coulomb 
energy separations for lengths smaller than some distance d. Thus the 
process necessarily involves some space-time separation or interval be- 
tween the electron and the hierarchy, which we will estimate statistically. 
Further, since we have no reference frame to refer this distance to, the 
resulting charge distribution relative to this space-time interval must also 
be distributed statistically, subject only to charge conservation. The calcu- 
lation we present is of the ratio of the square of this statistically smeared- 
out charge to the statistically estimated distance of separation, equated, as 
is often assumed, to the electron rest energy me c2. Schematically, the 
process we are computing is shown in Figure 4. 

Our first step is to take out the dimensional factors and thus reduce 
the statistical part of the calculation to dimensionless form. The square of 
the charge is e2; it is smeared out into two (or more) parts over some 

g 

Fig. 4. Schematic representation of the electron self-energy. 
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distance r. We introduce a random variable x to represent the charge in 
one part, and, in order to conserve charge between two parts, write the 
square of the charge as e2x(1 - x). As we have already argued, the coupling 
we should use at this stage in the development of the theory is 1/137, not 
the empirical value of the fine-structure constant ~, so e2=hc/137.  

Because of the statistical uncertainty in the concept of length at 
nuclear dimensions, or because of the exclusion principle, there is some 
distance of closest approach d, which acts as a cutoff in the distance r. 
Since the only stable mass other than the m e we are computing is the 
proton mass rap, and pro ton-an t ip ro ton  pairs occur in the levels of the 
hierarchy, it seems reasonable to take this shortest distance we can define 
to be the Compton wavelength of a pro ton-ant ipro ton  pair d =  h/2mpC; 
our second random var iabley is then defined by r =yd ,  wi thy  >/1. We like 
the idea of introducing Planck's constant into the theory as a basic 
measure of the breakdown of the concept of macroscopic length. 

The random variable x represents the charge in a system with three 
degrees of freedom smeared out statistically and interacting with the 
remaining charge 1 -  x. If we could cut the charge into two pieces, like a 
hunk of butter, x would vary between 0 and 1. But in our interpretation 
the hierarchy contains pieces with both positive charge (p~,~r+,O + . . . .  ) 
and negative charge (fin, Tr ,p , . . . )  as well as neutral and internally 
neutralized systems, all of which communicate with each other in the 
stabilization process. Hence, if we look at all the possibilities, and maintain 
overall charge conservation, x can have any value between - oo and + oo. 
Once we have gone beyond the first separation, we have no way of 
knowing whether the Coulomb energy we are evaluating is attractive 
(unlike charges) or repulsive (like charges) outside of the interval 0 < x  < 1. 
Statistically the positive and negative effects outside this interval must 
cancel. This statement is not obvious, as has been pointed out to us by F. 
Levin. To explain it, we note first that if Figure 4 represented a single 
process the charge would have to follow the electron line and there would be 
no charge smearing. But in fact we are computing a statistical average of 
such processes in which we assign the charge to two pieces according to the 
random variable x as ex and e(1-x). The probability of  this separation 
taking place at one vertex is proport ional  to the dipole e2x(l-x) .  Once we 
have two smeared out charge distributions further smearing will come from 
the virtual appearance of charged particle-antiparticle pairs; thanks to our 
diagrammatic rules, charge is conserved at each vertex in such processes and 
the overall electric neutrality guarantees that for the first distribution the 
charge remains ex or e ( l -x) .  Thus although this further smearing can lead 
to regions with any positive or negative value for the charge, these effects 
cancel outside the interval 0 _< x <_ 1. Further, after the initial smearing, the 
effective squared charge of each piece is e2x 2 or e~(1-x) 2, a fact we will need 
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below. As we can see from Figure 4, in order to reform the electron from 
these smeared out distributions, we need a second vertex. By microscopic 
time reversal invariance, which is guaranteed by our equal a-priori probabil- 
ities, the probability of this closure is again proportional to the dipole 
e2x(l-x). We conclude that the overall weighting factor P(x(1-x)) to be used 
in computing [e2x(1-x)] is proportional to [x(1-x)] 2, and is to be normed on 
the interval0 _< x _< 1. 

Putting this together, we see that 

or 

' 

nip= 137~ 

m e ( x ( 1 - - x ) ) ( 1 / y )  
(3.1) 

To calculate the expectation value of 1/y we need some probability 
weighting factor P(1/y). We have seen above that the hierarchy has three 
distinct levels with different interpretations, each carrying charge, so we 
assume that the distribution of charge in the statistical system has three 
degrees of freedom, each of which brings in its own random 1/y.  Thus we 
assume P(1 /y )  = (1/y). (1/y). (1/y) and find that 

1 4 
(3.2) 

If the charge splitting x had only one degree of freedom, the expecta- 
tion value of x(1 - x )  using the weighting P(x(1 - x ) ) =  xZ(1 - x )  2 would be 

fo fo ! Ki=(x(1-x) ) ,= l x ( 1 - x ) P ( x ( 1 - x ) ) d x /  tP(x(1-x))dx= 14 

(3.3) 

Actually, as already noted, we have three degrees of freedom coming from 
the three levels of the hierarchy. Once the distribution has separated into x 
and 1 - x the effective squared charge of each piece is x 2 or (1 - x) 2, so we 
c a n  write the recursion relation 
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3 
= - -  = ( 3 . 4 )  14 + ?K"-] ~ i=o 

Putting this back into formula, using/(3, because of the three degrees of 
freedom of the hierarchy, we have 

mp= 137~r 
= 1836.151497... (3.5) 3 [ (2) (2)2]4  me "i~X 1+ ~ + 7 X~ 

as compared with the latest empirical result 1836.15152_+ 0.00070 (Barash- 
Schmidt et al., 1978). 

Clearly, in presenting our calculation in this way, we have leaped 
ahead of what we are justified in doing as an explicit dynamical calcula- 
tion. But the calculation illustrates one way in which two algebraic 
quantities can be introduced into the theory in the form of the square of 
one divided by the other. The specific interpretation is compelling because 
of the high quality of the numerical result; the critical integer 3 which 
enters both the charge distribution and the separation as three degrees of 
freedom is, we are confident, correctly identified as the three levels of the 
hierarchy. That we should be able to interpret this calculation within our 
framework is evident. This fact alone puts us in a strong position. 

The quality of the result makes it important to discuss corrections 
which might destroy it. To begin with, we have used the value 137 for 1/a 
rather than the empirical value. As discussed below, because of coupling to 
level IV, we can anticipate corrections to 1/a of order 1/2562, which is of 
the correct order of magnitude. The second correction we can anticipate is 
in the cutoff parameter d. Our first estimate is almost certainly approxi- 
mately correct, but does not account for the fact that electrons in the 
hierarchy are sometimes present and sometimes absent. Hence, we can 
anticipate a correction to d of order me/2m~, as well as in the calculation of 
the correction to l/a. Thus we anticipate something like the empirical 
result for 1/a and must hope that the correction to d will almost exactly 
compensate for it in our formula. Looked at this way, the calculation can 
be viewed as a guide to how to construct the dynamics, rather than as a 
prediction of our theory. It has already proved of great value in setting up 
the classification scheme given in the last section, and in obtaining the 
kinematic bootstrap (Noyes, 1979) at level I. 

Since the language we use for justifying the calculation when exhib- 
ited pictorially as in Figure 4 makes the stable hierarchy look like a 
photon, we can try to extend this analogy. To begin with, if we look at 
coupling into the hierarchy through transverse photons, these will flip the 
spin of the electron. But again, for a specified spin of the electron, this can 
happen in only 1 of the 137 possible cases, so the coupling constant is the 
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Fig. 5. Single-"photon" exchange between electron and proton. 

same as we used in the Coulomb calculation (and including this in our 
"self-energy" calculation does not alter the result), which is encouraging. 
So consider an electron and a proton which exchange a "photon" so 
described. Making the static, nonrelativistic assumption that the mass of 
the proton does not change with velocity and that its motion does not 
affect the energy of the system, the additional effect we must consider is 
that the electron must acquire its own mass both before and after the 
exchange by the process already considered. This leads to the diagram 
given in Figure 5. 

If the "photon" exchanged in the figure carries any momentum, the 
diagram cannot represent the whole story, since there will also be the 
emission of "bremstrahlung" in the final state. So we consider the diagram 
only for the case when both electron and proton are at rest, but as far 
apart as we like. This is to be interpreted as an electron and proton bound 
in the ground state of hydrogen, and contrasted with a free electron and 
proton with the Coulomb effect shielded out. The second case then is the 
one already considered except that an inert proton has been added, and 
the first can be calculated as before, provided we multiply the coupling by 
the two additional powers of a shown in Figure 5; the statistical calcula- 
tion remains unaltered. We conclude that the binding energy of the ground 
state of hydrogen is given by ot2me c2 ---- mee4/h 2, which is indeed the correct 
result, in the static case. To obtain the center-of-mass correction we must 
allow for the motion of the proton, which requires more dynamics than we 
have developed. Further, to get the excited states, we must be able to 
describe unstable systems that decay via photon emission, for which we are 
as yet unready. 

We summarize the results of this section by pointing out that we 
already have in hand the basic ingredients from which atomic theory could 
be buil t--stable electrons in correct mass ratio to the proton, photons, and 
time-ordered Feynman vertices, together with a hint as to how the statisti- 
cal smearing out of the (not time ordered internally) three levels of the 
hierarchy's DCsS can stabilize dynamical systems with finite "self- 
energies." Calculation of genuine dynamical processes such as rr~ , will 
provide a critical test of whether we are on the right track. We also have 
the basic ingredients for an approximate nuclear physics--nucleons and 
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antinucleons coupled to pions and the vector mesons. What is still missing 
are processes involving beta decay and neutrinos. For these we must go on 
to level IV. 

4. LEVEL IV: WEAK INTERACTIONS AND C O S M O L O G Y  

Returning to the basic mapping matrix from which level IV can be 
constructed as given inequa t ion  (2.6), we see that it will lead, rearranged 
as a column, to an 18-fold descriptor. The specific mapping actually 
constructed leads in addition to 126 single descriptors, so it leaves 112 of 
the 256 available rows unaccounted for. We are confident that mappings 
that fill all rows can be constructed, and that the multiple descriptor can 
be 20, 22 . . . .  in other representations, still using our preferred basis. This 
enormous ambiguity is actually what we expect from elementary particle 
experiments at high energy. For  a while it was thought that there were only 
three "quark" quantum numbers (up, down, and strange) and two types of 
leptons (muon and electron with associated neutrinos). But now the 
"charm" quantum number has been observed, the "upsilon," the heavy 
lepton called "tau," and most experimental physicists believe that is 
unlikely to be the end of the story. The important point for us is that none 
of these new quantum numbers (in contrast to charge, baryon number, 
lepton number, and helicity) are reliably known to be exactly conserved. 
Many (e.g., strangeness) are violated in weak decays. But this is what we 
expect from our combinatorial hierarchy. From our basis of 127 linearly 
independent columns, we can construct 2127- 1 DCsSs. But only (256) 2 
linearly independent matrices are available to map, and hence stabilize, 
them. Thus, even if we happen to start with a particular DCsS, because of 
our basic statistical assumption that all possible columns are randomly 
available, after roughly (256) 2 discriminations we can expect this set to 
encounter some column from outside. This will destabilize the system and 
lead to a "weak decay." Our rough estimate of the coupling constant as 
1/(256) 2 is close to the "weak decay constant" of 10-Smp, where, as we saw 
in our last section, we are constrained to use mp as our unit of mass. Thus, 
qualitatively, the scheme predicts weak decays, as was already noted in the 
first presentation of the hierarchy (Bastin, 1966). We will not even attempt 
to sketch how this dynamics might work in this paper. 

However, we can proceed a little way with the implications of our 
structure as a classification scheme. The number 18 that occurs in the 
simplest possible construction of a mapping is already suggestive of 
quark-ant iquark pairs with three colors and three flavors. The 18-fold 
descriptor then corresponds to conservation of baryon (or quark) number 
for this system. Doubling 18 of the single descriptors will give us 36 spin 
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states. We can use 9 •  18= 162 rows to assign color and flavor, leaving 
2 5 6 -  1 8 -  3 6 - 1 6 2  = 40 rows to describe various types of leptons. Working 
out the details of all this will be a fascinating puzzle. We will certainly 
want to be intimately in touch with high-energy experiments and current 
quantum chromodynamics and lepton theories in order to obtain empirical 
guidance. But, since we can count on destabilization of these "partially 
conserved quantum numbers," we know that, qualitatively at least, we are 
dealing with the right structure. We believe it will be more profitable to 
tackle this problem after we have worked out a firmer hold on atomic and 
nuclear physics at level III than to plunge into it now. 

Before leaving the subject of "weak interactions" we note that we may 
have been too hasty in placing all of them in level IV. Just as we were able 
to interpret two columns at level III as a charged lepton (electron) with 
two spin states, we could leave off the charge descriptors and interpret the 
resulting columns as an electron-type neutrino. Then, if we can find a way 
to couple this to the baryons--which we have not yet succeeded in doing 
- - w e  might be able to include ordinary beta decay at level III. This would 
not only complete our picture of low-energy nuclear physics, but also 
could lead to a Weinberg-Salam-type of weak-electromagnetic unification 
with the same coupling constant of 1//137. The difficulty will be to show 
that the coupling to baryons generates a sufficiently large mass for the " W  
boson" so that the fact that it has yet to be observed experimentally can be 
accounted for. Then only the more exotic leptons, like the quark quantum 
numbers, would come in at level IV. We suspect this is the correct route to 
follow. The check will be whether the extension to level IV gives the 
quantitatively correct modification of a in accord with experiment. The 
correction will clearly be of order 1//(256) 2 , which is the right order of 
magnitude. 

But this "high-energy physics" aspect of level IV only deals with the 
lower levels of its potential complexity-- the 2127- 1 ~ 1038 DCsSs, each of 
which is a distinct and discriminable entity. Just as we interpret 1//137 as 
an approximation to a, we interpret 10 .38 as an estimate of the gravita- 
tional coupling constant between two protons--protons rather than elec- 
trons, since we have already accounted for the rest mass of the electron in 
terms of this unit. At this point a more conventional argument, adapted 
from a remark of Dyson's (1952), becomes relevant. If we try to count N, 
charged particle-antiparticle pairs within a volume whose radius is their 
compton wavelength, their electrostatic energy is 

NeeZ // ( h // 2mc) = Ne( e2 // hc)2mc 2 (4.1) 

We interpret this result as saying that if we try to determine the number N e 
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for a system with more than 137 pairs by electromagnetic means, we are 
unable to do so because the energy has become so large that additional 
pairs could be present, and the counting breaks down. Hence, N~ = 137 is 
the maximum meaningful number of charged particle pairs we can discuss 
electromagnetically in such a volume (Noyes, 1974). 

Extending the argument to gravitation, we see that, since 

GmTIh )mp   (4.2) 

the maximum number of gravitating protons we can discuss within the 
compton wavelength of any one of them is NG ~  1038. In this case, the 
gravitational field at the surface is so intense that light cannot escape, so 
this system forms a Laplacian "black hole" (Laplace, 1795). Hence, just as 
failure of the "fourth level" of the hierarchy to possess linearly indepen- 
dent mappings gives us an estimate of instability to weak decay, the upper 
limit 2127- 1~1038 represents a gravitational instability for systems with 
large numbers of particles. 

Since we have ~103s discriminate entities in the scheme, we are 
logically justified in starting our discussion with the (1038) 2 possible dis- 
criminations between them. For  stability, these systems should contain 
lepton number and baryon number (1038) 2 , although we cannot as yet 
prove such a conjecture. Given it, the initial discriminations will create all 
sorts of ephemeral forms of the type already discussed, and a historical 
system of loci that provides an initial space-t ime mesh. Once the decays 
and scattering have proceeded a while, these will settle down to protons, 
electrons, photons, hydrogen atoms . . . .  and we have started the "big 
bang." The radiation soon breaks away from the matter, and provides a 
unique discrete approximation to a space-time framework, locally defined 
in terms of the cosmic background radiation. Since this "black body 
spectrum,' can be measured locally, it provides us both a cosmic time scale 
from the temperature, and an absolute frame for measuring particle 
velocities. Our hope is that we can use this idea to define space-t ime 
frameworks more easily connected to laboratory observation than abstract 
definitions. In particular, since our W boson-photon  coupling is discrete, 
and defined at proto-space-t ime loci, we should be able to use our 
dynamic scheme to explain what we mean by a local discrete coordinate 
system for physical measurement. Only when this task is complete can we 
tackle the question of what we might mean by a "wave function," and how 
we are to relate our particular formalism to the successful results obtained 
by conventional quantum mechanics. 
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5. CONCLUSION 

In this paper we have sketched a physical interpretation of the 
combinatorial hierarchy, which~ if the program can be carried through, 
should provide a finitist conceptual frame for that fundamental revision of 
physics which we seek. Our philosophical reasons for adapting this ap- 
proach are discussed in detail in the opening section. Here we stress that 
the contact with experiment already established in this paper, together with 
the indications of structural contact with the classification schemes used in 
elementary particle physics, and conceptual contact with the fundamental 
ideas underlying current cosmology, make it clear that no field of physics 
need be omitted in this synthesis. The original coincidence between the 
cardinals of the hierarchy and the inverse boson field coupling constants 
allows us to believe that we have indeed unified strong, electromagnetic 
and gravitational phenomena in one framework. The weak decay instabil- 
ity is also indicated. Our proposed classification scheme brings in the 
absolute conservation laws at the correct level, and points toward a 
weak-electromagnetic unification at that or the next level. Structural con- 
tact exists between S U  2, S U  3, and S U  6 (quark) classifications, including an 
appropriate three-color-three-flavor option flexible enough to allow for 
new flavors and new heavy leptons. The cosmology should yield the 
conserved quantum numbers of the universe, some sort of "big bang," and 
hence the cosmic background radiation as a unique reference system. Since 
this background is not time reversal invariant, it might even lead ultimately 
to the explanation of the K L - K s decay. So far as we see, no major area of 
physics has been omitted as potentially outside the reach of a scheme of 
this structure. 

APPENDIX: MATHEMATICAL STRUCTURE OF T H E  
HIERARCHY 

This appendix contains a short formal account of the essential 
mathematical features of a "discrimination system." Throughout, S will 
denote a nonempty finite set, and C---{0, 1) will denote either the cyclic 
group of order 2 (with addition mod2, or equivalently, Boolean Exclusive- 
Or as group operation) or the field of two elements (with addition as 
before, and integer multiplication, or equivalently, Boolean And as field 
multiplication operation); the context makes clear which usage is intended. 
The empty set is 0 ;  N = ( 1,2, 3 . . . .  ), [N o = (0, 1, 2, 3 . . . .  }; I xl is the cardinal- 
ity of a set X. 
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A.1. Discrimination System 

A.I.1. Definition. A discrimination system of type N (N ~ ~) is a group 
S isomorphic to the Abelian group C ~v= C @ - - -  @C, direct sum of N 
copies of C, together with additional structure as detailed later; its order is 
tS]=2u.  Thus x E S  iff x = ( x  I . . . . .  xu) (xi=0,1) ,  the group operation 
(written +)  on S is termwise addition rood2 (or equivalently, Boolean 
Exclusive-Or applied to strings of length N), and the group neutral is 
e = ( 0  . . . . .  0 ) .  

A.1.2. Fact. Besides being symmetric (Abelian) and associative, the 
group operation + on S is also discriminative: 

( V x , y , z E S )  x + x = e  and y4=z~y+z4=e 

i.e., + can "discriminate" between a pair of equal elements and a pair of 
unequal elements; the (unique) group neutral e is called the "(discrimina- 
tion) neutral for S." 

A.1.3. Theorem. Any set S equipped with a binary operation that is 
symmetric, associative, and discriminative (with respect to a unique dis- 
crimination neutral e) is isomorphic to an Abelian group C u for some 
N E ~; the discrimination neutral e is then (identified with) the neutral 
element in the group C N. 

A.1.4. Remarks. (1) The Boolean dual u = ( 1 , . . . ,  1) of the discrimina- 
tion neutral e = (0 . . . . .  0) in a discrimination system S is referred to as the 
"antineutral" for S. (2) The group C u, + can always be given a multiplica- 
tion * so that C u, + ,  �9 becomes a field F of prime power 2 N isomorphic to 
the Galois field GF(2N); its neutral-free part c N\(e)  forms a multiplica- 
tive cyclic group of order 2 N -  1 with identity element which can be chosen 
to be the antineutral u = (1 . . . . .  1). 

A.2. Diseriminately Closed Subsets 

A.2.0. Remark. To avoid repetition, the abbreviation " d "  or "d-"  will 
be used for the words "discrimination, discriminate, discriminately" as 
appropriate throughout this and later sections. 

A.2.1. Definition. Let S be a d-system with neutral e and let T C_ S be 
a subset. Then T is a de-subset (discriminately closed subset) (alias, subset 
T is de) iff (a) T is neutral-free (i.e., T C_ S \ (e ) ) ,  (b) the e-join T U { e} of T 
is a subgroup in S. 

A.2.2. Facts. (1) Conditions (i) and (ii) are equivalent: (i) T is a 
dc-subset of S; (ii) (Vx , y~  T) xv~yc~x+yE T. (2) S \ ( e }  is a de-subset 
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of S. (3) ~ is a dc-subset of S. (4) Singleton (x )  is a tic-subset of 
Seaxr  (5) r i s  a subgroup of Sr is a dc-subset of S. (6) R N T i s  
a dc-subset of S whenever R and T are dc-subsets of S. 

A.2.3. Definition. The d-closure T dc of a neutral-free subset T C_S is 
the smallest dc-subset of S containing T; T dC is d-generated by T. The 
d-union R tO aCT of two neutral-free subsets R, T C_ S is the dc-subset (R tO 
T)dq The latter definition extends in an obvious way to families (T,)iEI of 
neutral-free subsets of S. 

A.2.4. Facts. Let R, T be tic-subsets of S; then (1) T is dce:~T= T de. 
(2) (TalC) dC= T de, hence r dC is dc. (3) R C r ~ R d c  c_ Tdq (4) RdCu TalC C_ 
(R U T) a~. (5) (RaCu Tac)acC_(R U T)aq (6) RaCuaCTaC=(Ra~u TaC) aC= 
(R tO T) de = R U aCT. 

A.2.5. Fact. If ( T )  denotes the subgroup generated in S by a subset 
TC_S and T is neutral-free then TaC=(T) \ {e}  and ( T ) =  TaCu (e}. 

A.2.6. Definition. A subset T of a d-system S is a d-subsystem of S iff 
T is a subgroup of the group S and T ~ ( e ) .  

A.2. 7. Fact. If T is a d-subsystem of a d-system S of type N then T is 
isomorphic to a nontrivial subgroup C M c C N with 1 ~ M  <N, and 1 <[T]  
= 2M< [S I= 2 N, and the neutral elements of T and S coincide. 

A.2.8. Definition. The d-complement of a dc-subset T in a d-system S 
is the unique tic-subset R such that the subgroup R U (e} is the direct 
complement of the subgroup T U (e} in the group S. 

Notation: R = S edcT and S = R (~)dcT. 

Remark. Since R=SGaCTe=~T=SeaCR, so s is said to be d-decom- 
posed by the d-complementary subsets R and T. 

A.2.9. Fact. R and T are d-complements in Sr n T = ~  and R 
uacT=SX(e}.  

A.2.10. Definition. Subset T is d-independent in S iff T is neutral-free 
and (Vt ~ T) { t}dCn ( T \  { t))ac = ~ ;  otherwise r is d-dependent in S. 

Remark. A neutral-free subset T is d-independent in d-system S<=* T is 
an independent subset in the group S. The definition extends in an obvious 
way to families (T,.)~EI of neutral-free subsets of S, thus (T~)~e , is a 
d-independent family iff (Vk ~ I )  Tk dcn [ U i e l ,  i:7~k T i ]  ac = ~" 

A.2.11. Fact. These four conditions are equivalent: (a) Neutral-free 
family (Ti)i~ I is d - independent  in d-system S. (b) Subgroup 
family ( ( T / ) ) i e l  is independent in group S. (c) Subgroup ( U i e l T i )  = 
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. ac T has a unique representa- group direct sum @ieI(T,.) .  (d) Each xE Ui~_l i 
tion x=~i~ lX  i with each component xi~TiUCU{e}=(T,) and x i~e for 
at least one index j  E 1. 

A.3. Discriminate Morphisms 

A.3.1. Definition. A morphism f :  S---~T between two d-systems S and 
T is a d-morphism iff f is an injective group homomorphism between the 
groups S and T. (Thus every automorphism f :  S---~S is a d-morphism on 
the d-system S.) 

A.3.2. Remark. An automorphism f : S ~ S  on a d-system S leaves 
fixed the neutral e [ f ( e )=  e] and permutes some or all of the members of 
the maximal neutral-free subset S\{e} in S. 

A.3.3. Facts. Let f : S ~ T  be a d-morphism; then (1) R C S ~ f ( ( R  ~) 
= ( f ( r ) ) ;  (2) R C S\{e}~f(RaC)=[f(r)]ac; (3) R=RaCc~f(R)=f(R)aC; 
(4) (Si)ie~ is independent (or, respectively, d-independent) in Sr 
is independent (or, respectively, d-independent) in T. 

A.3.4. Remark. Recall the following: Let G be a group with neutral e; 
let E(G) be the group of endomorphisms of G with respect to the 
composition operation o, [(foh)(g) = f(h(g)) Vg E G]; let A(G) C E(G) be 
the subgroup of automorphisms of G. Introducing a second group opera- 
tion ( + )  on E(G), namely, pointwise addition [(f+h)(g)=f(g)+h(g) 
VgEG], makes E(G),+ Abelian when G is Abelian, and E(G),+,o 
becomes a ring with neutral endomorphism e ( g ) =  e (Vg E G) and identity 
automorphism u ( g ) = g  (VgEG). The case where G is a d-system is of 
special interest. 

A.3.5. Theorem. Let S be a d-system of type N with neutral e. Let 
E(S) be the Abelian group of endomorphisms of S under pointwise 
addition, with neutral endomorphism e. Then E(S) is a d-system of type 
M--  N 2 and order 2 (N2), with neutral e and antineutral u. [Hence pointwise 
addition is discriminative on E(S).] 

A.3.6. Theorem. The ring E(S), +, o of endomorphisms of a d-system 
S of type N is isomorphic to the ring of square N x N-matrices over C. 

A.3.7. Theorem. Let A ( S ) c E ( S )  be the subset of automorphisms of 
S; then A(S)C_ E(S) \{e ) ,  i.e., is a neutral-free subset in the d-system E(S), 
but is not a dc-subset in E(S). Indeed, A(S) ac= E(S) \{e ) .  

Corollary. Every nonneutral endomorphism of S is a finite sum of 
distinct automorphisms of S. 
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A.3.8. Remarks. Let S be a d-system of type N = t ;  then IS[= 
2 t, [E(S)[ = 2 (2'), ] A ( S ) [  = (2 t - 1)(2 t - -  2)(2 t - 4)- �9 �9 (2 t - 2 t - l ) ;  let r t = 

I A (S)I/[E(S)] ,  then r I = 0.5 and r t decreases monotonically, and limt__ ,~ r t 
=0.288788.. .  (i.e., for large t about 29% of all endomorphisms on S are 
automorphisms). For example: 

t 1 2 3 4 5 16 

ISI 2 4 8 16 32 65,536 
IA(S)I 1 6 168 20,160 9,999,360 3.34...(1076) 
IE(S)I 2 16 512 65,536 33,554,432 2256=1.1579...(1077) 

A.3.9. Remark. Recall the following: If a E A (S) then we may define 
an equivalence relation [a] on S by x[a]ye=~x= aky for some k ~ N 0. Let 
s E ~ be the least integer such that a s--u (the identity automorphism on 
S). Then an equivalence class mod[a] is called an a-cycle of size r where r 
is its cardinality. Each a-cycle is an orbit of the subgroup ( a ) =  
( u , a , a  2 . . . . .  a s - l )  in A(S) ,o ,  and vice versa. Its size r = m i n ( O < k < s l x =  
akx ) = indexl(a) :Ax] where Ax is the stabilizer subgroup (b E A(S)Ix = b x )  

of an arbitrary element x in the a-cycle. 

A.3.10. Definition. A n  automorphism a E A ( S )  is maximal iff there 
exists an a-cycle equal to S \ ( e }  (i.e., of maximum size r = 2  N -  1); a is 
minimal iff there exists an a-cycle equal to (x} for some xq=e (i.e., a 
nonneutral a-cycle of minimum size r = 1). 

A.3.11. Theorem. Each d-system S of type N has (a) at least 2N--2 
distinct maximal automorphisms, and (b) at least 2 N -  1 distinct minimal 
automorphisms. 

A.3.12. Remark. The proof of the above theorem requires the con- 
struction of some not immediately obvious automorphisms: 

(a) Let F be the (Galois) field associated with S [Remark A.1.4(2)], 
F 0--- F \  (e} its neutral-free multiplicative group, cyclic of order n = 2 N -  1. 
Choose any one of the n - 1  generators b E F  o (thus b n = u ~ b ,  and 
u,b,b 2 . . . . .  b"-1 are all the distinct elements of Fo). Let a:S---~S,a(x)= bx 
(if x ~ e ) ,  a(e)=e;  then a ~ A ( S )  and for a fixed element x ~ S \ ( e }  the 
images ak(x )=bkx  ( k =  1 . . . . .  n) are all distinct and exhaust S \ ( e } .  Thus 
each such a is a maximal automorphism on S, one for each of the 2 N -  2 
generators b E F o. 

(b) Given a dc-subset T in S, let R be its d-complement (Definition 
A.2.8). Define f =  u '@m'  : S - , S  by f ( x )  = u'(x), (Vx  E T\ (e} ) ,  where u' is 
the identity automorphism on the d-subsystem T \ ( e } ,  and f ( y ) = m ' ( y ) ,  
(Vy E R \ ( e } ) ,  where m' is a maximal automorphism [by (a) above] on the 
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d-subsystem R \ { e } .  Then, V x = t G r ~ S = ( T \ { e } ) O ( R \ { e } ) ,  we have 
f (x )  =(u'@m')(t@r) = u'(t) + m'(r). Thus f ~ A ( S )  a n d f  fixes the dc-subset 
T. Taking T =  {x} ( x ~ e )  makes f minimal, and T is one of its cycles of 
size 1 (the only nonneutral  one). 

A.3.13. Definition. The df-set (discrimination fixed set) of an auto- 
morphism a E A (S)  is the subset DF(a) = { x ~ S \ { e }Ix = a(x) }. 

Remark. Each DF(a) is a tic-subset; it may be empty [e.g., if a(x) = x 
only i f x  = e, i.e., if a "unf ixes"  every nonneutral  member  of  S]. 

A.3.14. Theorem. Each dc-subset T in a d-system S is the df-set of 
some automorphism a ~ A (S). 

A. 4. Discrimination Hierarchies 

A.4.1. Definition. A d-system S of type N determines iteratively a 
sequence E~ 2 . . . . .  E m , . . .  of d-systems where E ~  and (VINES)  
Era= E(E m- I) is the group of endomorphisms of the d-system E ' - 1  under 
pointwise addition. Then E m is the d-system of level m determined by the 
base d-system E ~  S; it is of type t(m) and order [E"] = 2t('); A m denotes 
the subset of automorphisms in Era; the neutral (or, respectively, identity) 
morphisms in E m are denoted by e m (respectively, urn). 

Remark. Where need be, the previous single-level notations such as 
S ,e ,u ,E (S ) ,A (S ) , e ,u  may now be replaced by E~176176 1. 

A.4.2. Fact. Since t ( 0 ) = N  and t(m)= t ( m - 1 )  2, so t (m)= N (2m) and 
I Eml = 2 t(m) (Vm G 1~o). 

A.4.3. Remark. Plainly, each E m is isomorphic to E ~ if E ~ is of type 
N =  1. More generally, if N > 2, we have an injective mapping fm of E m 
strictly into Em + 1 given (Vm E N0) by f ro(e ' )  = e m + 1 and f r o ( X )  = a x E Em + 1 
(VX 4~e '~ in E " )  where a x is an automorphism with singleton dc-subset {x} 
as its df-set (Definition A.3.13). This mapping can be extended, in certain 
circumstances, to one that maps many  more df-sets in one level injectively 
into an independent set of automorphisms in the next level, in a way now 
to be made precise. 

A.4.4. Construction. Let N > 2; let m E N0; let K m c E  m be an inde- 
pendent subset with I Kml=  k(m) [<  t(m)] (Fact A.4.2). Let K C_ K m be any 
one of the 2k(m)--I nonempty  subsets of Kin; and define W x = { a E  
Am+lIKaC=DF(a)}. (Note that distinct subsets K of K m have distinct 
d-closures K dc because K m is an independent set of elements.) Simple 
examples with N =  3, m = 1, show that we may have I WKI > 1. In  such a 
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case, choose precisely one au tomorph i sm aK, say, in W K and  let C m+l be 
the set of all such choices; thus 

c m + l =  ( a K E  A m+ i lK c Km, K v a ~ , D F ( a K ) =  K ac ) 

[= Cm+~(Km), if we need to refer to the par t icular  set K m in use]. Hence  
C m + I c A ' ~ + I c E ' ~ + I ,  and [Cm+l l=2k(m)- - I  [ = c ( m + l ) ,  say, by  way of 
definition]. To  initialize this const ruct ion we define C o to be a basis (i.e., a 
maximal  independent  subset) for  E ~ ( =  S), so that  c (0 )=  I SI = N. 

A.4.5. Question. Is it possible to construct  iteratively the sequence 
K ~  C ~  ~ . . . . .  K m + l = c m + l ( K  m) . . . .  with each K m an inde- 

pendent  subset (as required by  Const ruct ion A.4.4)? An obviously neces- 
sary condit ion for this to be possible is this inequality: 

k ( m +  1 ) = c ( m +  1 ) = 2  k(m)-  1 < t ( m )  2 [ , ]  

since K m+l C E m+ t. A sufficient condi t ion will be  given below (A.4.8). 

A.4.6. Definition. Let S =  E ~ be a base  d-system of type N/> 2. 
(A) For  m r  o, E m is d-injectable into E m+l via an independent  

subset K m c E m iff there exists at least one choice of au tomorph i sms  for 
the set C m+ ~(K")  which makes  the latter set independent  in E " +  1. 

(B) A finite sequence (E  ~ E l . . . . .  E H) of d-systems determined by  E ~ 
is a d-hierarchy (discrimination hierarchy) of height H + I  iff these three 
condit ions hold: (1) H / >  1. (2) Independen t  subset  K ~ is maximal  in E ~ 
(3) For  each m = 0, 1 . . . . .  H -  1, but  not  for m = H,  E m is d-injectable into 
E m+l via the independent  subset  K m C E  m, where K m= Cm(K m-l)  for  
each m = 1 . . . . .  H -  1. 

(C) A d-hierarchy is trivial if H ~< 1, otherwise nontrivial. 

A.4.7. Remark. The sequence of independent  subsets ( K  ~ . . . . .  K/-/) in 
a d-hierarchy ( E  ~ . . . . .  E/~) is a "discr iminate  spine"; examples  show that  it 
need not  be unique. If  for some m the choice of C m+l is not  unique, each 
possible choice of C m+l gives rise to a different "b r anch"  of the spine. 

A.4.8. Main Theorem. A necessary and  sufficient condit ion for  the 
existence of a nontrivial  discr iminat ion hierarchy is that  the base  dis- 
cr iminat ion system S =  E ~ be of type N = 2 ;  and  then the discr iminat ion 
hierarchy is of height H + 1 --4.  

A.4.9. Remarks. (1) The  necessity follows f rom the condi t ion [,] in 
(A.4.5): Since H~>2  and E m is d-injectable into E " + l  for  m = 0 , 1  . . . . .  
/ - / - 1 ,  condit ion [*] holds in part icular  for m = 0 ,  1. Thus,  k ( 0 ) = N  and 
2 u -  1 < t (0 )  2 • N 2 so that  2 < N < 4; and  k(1) = 2 k(~ 1 = 2 u -  1, hence 
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2 k ( 1 ) - l = 2 ( 2 u - 1 ) - l < t ( 1 ) 2 = [ t ( O ) 2 1 2 = N  4 so that N = 2  as asserted. But 
then [,] can be satisfied for m =0,  1 or 2 but not for m/> 3; in particular E 3 
is not then d-injectable into E 4 s o  that 2 < H <  3; i.e., the discrimination 
hierarchy must have height 3 or 4. (2) A theoretical proof of the existence 
of a discrimination hierarchy with N = 2  and height H +  1---4 has been 
provided by C. W. Kilmister (1978) and will be reported elsewhere; an 
empirical representation using matrices over the field (0,1) has been 
constructed by H. P. Noyes and described in the main body of the paper 
to which this Appendix is attached. 

A.4.10. Remark.  The connections between the notations used in this 
Appendix and those used in the main text (e.g., in Table I) are as follows: 

Table I Appendix 

Index of level = 1,2, 3, 4 
"Dimension" of level = n(l)  
Number  of independent 

columns is j ( l )  
Number of discriminately 

closed subsets used in level 
is d(l)--~ 2 j(/) --  1 

m = l -  1 =0,  1,2,3 
"Type" of level = t (m)  = n ( l -  1) 
Number of independent elements in 

s u b s e t  K m is k ( m ) = j ( l -  1) 
Number of automorphisms chosen for 

the subset C m+ l, corresponding one- 
to-one with dc-subsets used in pre- 
vious level is c( m + 1)= 2 ~(") - 1 = d( l) 
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